博客
关于我
计算几何小结:叉积
阅读量:261 次
发布时间:2019-03-01

本文共 453 字,大约阅读时间需要 1 分钟。

一个神奇的东西,可以判断两线段是否相交,三点共线,多边形角形面积……

code:

double multi(point p1,point p2,point p0){    double x1=p1.x-p0.x,x2=p2.x-p0.x;    double y1=p1.y-p0.y,y2=p2.y-p0.y;    return x1*y2-x2*y1;}
第一次看到简直一脸懵逼,什么鬼?

首先我们考虑p0是原点的情况。

当x1=x2时如果p1要顺时针旋转到p2,则他们的叉积小于0,否则大于0。

如果x1,x2变化,也容易证明,叉积依然小于0.

在其他象限也有这样的规律。

所以叉积的正负分别代表p1逆/顺时针得到p2

关于第三个参数p0,我感性的理解为以他为旋转中心。

那么问题来了,假如p1,p2,p0三点共线,那叉积是多少。

简单的猜想:0

why

我认为可以从叉积的几何意义理解。

 叉积的绝对值除二就是那三个点组成的三角形的面积!

可以将图画出来,用割补法求,最后化简出来就是叉积的式子了。

你可能感兴趣的文章
Netty源码—5.Pipeline和Handler一
查看>>
Netty源码—5.Pipeline和Handler二
查看>>
Netty源码—6.ByteBuf原理一
查看>>
Netty源码—6.ByteBuf原理二
查看>>
Netty源码—7.ByteBuf原理三
查看>>
Netty源码—7.ByteBuf原理四
查看>>
Netty源码—8.编解码原理一
查看>>
Netty源码—8.编解码原理二
查看>>
Netty源码解读
查看>>
netty的HelloWorld演示
查看>>
Netty的Socket编程详解-搭建服务端与客户端并进行数据传输
查看>>
Netty的网络框架差点让我一夜秃头,哭了
查看>>
Netty相关
查看>>
Netty简介
查看>>
Netty线程模型理解
查看>>
netty解决tcp粘包和拆包问题
查看>>
Netty速成:基础+入门+中级+高级+源码架构+行业应用
查看>>
Netty遇到TCP发送缓冲区满了 写半包操作该如何处理
查看>>
netty(1):NIO 基础之三大组件和ByteBuffer
查看>>
Netty:ChannelPipeline和ChannelHandler为什么会鬼混在一起?
查看>>