博客
关于我
计算几何小结:叉积
阅读量:261 次
发布时间:2019-03-01

本文共 453 字,大约阅读时间需要 1 分钟。

一个神奇的东西,可以判断两线段是否相交,三点共线,多边形角形面积……

code:

double multi(point p1,point p2,point p0){    double x1=p1.x-p0.x,x2=p2.x-p0.x;    double y1=p1.y-p0.y,y2=p2.y-p0.y;    return x1*y2-x2*y1;}
第一次看到简直一脸懵逼,什么鬼?

首先我们考虑p0是原点的情况。

当x1=x2时如果p1要顺时针旋转到p2,则他们的叉积小于0,否则大于0。

如果x1,x2变化,也容易证明,叉积依然小于0.

在其他象限也有这样的规律。

所以叉积的正负分别代表p1逆/顺时针得到p2

关于第三个参数p0,我感性的理解为以他为旋转中心。

那么问题来了,假如p1,p2,p0三点共线,那叉积是多少。

简单的猜想:0

why

我认为可以从叉积的几何意义理解。

 叉积的绝对值除二就是那三个点组成的三角形的面积!

可以将图画出来,用割补法求,最后化简出来就是叉积的式子了。

你可能感兴趣的文章
nginx:/usr/src/fastdfs-nginx-module/src/common.c:21:25:致命错误:fdfs_define.h:没有那个文件或目录 #include
查看>>
Nginx:NginxConfig可视化配置工具安装
查看>>
Nginx:现代Web服务器的瑞士军刀 | 文章末尾送典藏书籍
查看>>
ngModelController
查看>>
ngrok | 内网穿透,支持 HTTPS、国内访问、静态域名
查看>>
ngrok内网穿透可以实现资源共享吗?快解析更加简洁
查看>>
ngrok内网穿透可以实现资源共享吗?快解析更加简洁
查看>>
NHibernate学习[1]
查看>>
NHibernate异常:No persister for的解决办法
查看>>
Nhibernate的第一个实例
查看>>
nid修改oracle11gR2数据库名
查看>>
NIFI1.21.0/NIFI1.22.0/NIFI1.24.0/NIFI1.26.0_2024-06-11最新版本安装_采用HTTP方式_搭建集群_实际操作---大数据之Nifi工作笔记0050
查看>>
NIFI1.21.0_java.net.SocketException:_Too many open files 打开的文件太多_实际操作---大数据之Nifi工作笔记0051
查看>>
NIFI1.21.0_Mysql到Mysql增量CDC同步中_日期类型_以及null数据同步处理补充---大数据之Nifi工作笔记0057
查看>>
NIFI1.21.0_Mysql到Mysql增量CDC同步中_补充_插入时如果目标表中已存在该数据则自动改为更新数据_Postgresql_Hbase也适用---大数据之Nifi工作笔记0058
查看>>
NIFI1.21.0_Mysql到Mysql增量CDC同步中_补充_更新时如果目标表中不存在记录就改为插入数据_Postgresql_Hbase也适用---大数据之Nifi工作笔记0059
查看>>
NIFI1.21.0_NIFI和hadoop蹦了_200G集群磁盘又满了_Jps看不到进程了_Unable to write in /tmp. Aborting----大数据之Nifi工作笔记0052
查看>>
NIFI1.21.0_Postgresql和Mysql同时指定库_指定多表_全量同步到Mysql数据库以及Hbase数据库中---大数据之Nifi工作笔记0060
查看>>
NIFI1.21.0最新版本安装_连接phoenix_单机版_Https登录_什么都没改换了最新版本的NIFI可以连接了_气人_实现插入数据到Hbase_实际操作---大数据之Nifi工作笔记0050
查看>>
NIFI1.21.0最新版本安装_配置使用HTTP登录_默认是用HTTPS登录的_Https登录需要输入用户名密码_HTTP不需要---大数据之Nifi工作笔记0051
查看>>